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The object of this paper is to present a new approach based on the method of inner boun- 
dary condition for solving singular perturbation problems. The original problem is partitioned 
into inner and outer region differential equation systems. Asymptotic expansion is used to 
obtain the terminal boundary condition, Using an appropriate transformation, a new inner 
region problem is obtained and solved as a two point boundary value problem. The derivative 
boundary condition at the terminal point is then derived from the solution of the inner region 
problem. Using this condition, the outer region problem is efficiently solved by employing the 
classical finite difference scheme. The proposed method is iterative on the terminal point. 
Some numerical examples have been solved to demonstrate thle efficiency of the method. 
‘0 1986 Academic Press. Inc. 

1. INTRODUCTION 

The main purpose of this paper is to describe a general computational method 
for solving linear singularly perturbed boundary value problem, P,, given by 

&y +f(x) y’ + g(x) y = h(x) (1) 

with appropriate boundary conditions and 0 <E+ 1. Equations such as this Hn 
which the term containing the highest order derivative is multiplied by a small 
parameter E, arise frequently in fluid mechanics (boundary layer problems), 
elasticity (edge effect in shells), quantum mechanics and fluid dynamics, etc. The 
numerical treatment of singular perturbation problems has always been far from 
trivial. Pearson [lo] was perhaps the first to attempt something like net 
adjustments in finite difference scheme while treating singularly perturbed 
equations. Then the idea was developed further by Abrahamsson et al. [ 11 in their 
study of difference methods to singular perturbation problems. They have shown, in 
general, that the accuracy cannot be better than O(s). Motivated by the asymptotic 
behavior of singular perturbation problem, Hsiao and Jordan [7] have discussed 
numerical schemes based on the method of matched asymptotic expansion and 
modifying the boundary layer problem. Reinhardt Cl 1 ] also discussed the methods 
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based on matched asymptotic expansion. Recently, Roberts [ 121 has given a boun- 
dary value technique for solving singular perturbation problems. There are wide 
variety of methods based on matched asymptotic expansions to solve singularly 
perturbed boundary value problems. These can be found in the well known books 
of Eckhaus [S], O’Malley 191, Van Dyke [13], Nayfeh [S], Cole [3] and 
Axelsson [2]. Looking at the literature cited above, an interesting but amusing 
observation that has been made is that some of the workers have attemped to solve 
the singular perturbation problem in the outer region as a reduced problem 
obtained by putting E = 0 and thereby ignoring the contribution due to this term, 
however small it may be, to the solution of the original problem. Our aim here is to 
solve the singular perturbation problem, as it is, both in inner as well as outer 
regions without disturbing the nature of the equation. This method is designed on 
the basis of the asymptotic behavior of the singular perturbation problem. The 
original problem is partitioned into inner and outer region differential equation 
systems. To obtain the terminal boundary condition, asymptotic expansion is used 
in the outer region with appropriate boundary condition. Using an appropriate 
transformation, a new inner region problem is obtained and solved as a two point 
boundary value problem. The derivative boundary condition at the terminal point 
is then derived from the solution of the inner region problem. Using this condition, 
the outer region problem is efficiently solved by employing the classical finite dif- 
ference scheme. Finally, the solutions of inner and outer region problems are com- 
bined to obtain an approximate solution to the original problem. The process is to 
be repeated for various choices of terminal point, until the solution profiles stabilize 
in both the regions. Some numerical examples have been solved to demonstrate the 
efficiency of the method. Computational results are compared with the exact 
solutions. 

2. DESCRIPTION OF THE METHOD 

To be specific, we consider the following singular perturbation problem (SPP): 

for 

v”(X) +.fb) Y’(X) + g(x) Y(X) = 0) (2) 

O<x< 1 with y(O)=a and u(l)=B (3) 

where E is a small positive parameter (0 < ~61); ~1, p are given constants; andf(x), 
g(x), and h(x) are assumed to be sufficiently continuously differentiable functions in 
[0, 11. Furthermore, we assume that f(x) > M> 0 throughout the interval [0, 11, 
where M is some positive constant. This assumption merely implies that the boun- 
dary layer will be in the neighbourhood of x = 0. 

As mentioned, we divide the original problem into two problems, an inner region 
problem and an outer region problem. Let x, be the terminal point or common 
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point or width or thickness of the inner region (boundary layer). To obtain the ter- 
minal boundary condition (i.e., an approximate value of y at the terminal point xP). 
we use the aymptotic expansion in the outer region with appropriate boundary con- 
dition. As is well known from the singular perturbation theory (see Nayfeh [S] ) for 
the case f(x) > 0 in [0, 11, the boundary condition at the origin must be dropped 
and the boundary condition at the other end (i.e., at x = 1) has to be taken into 
account in the outer region. Hence, the outer region problem is given by 

&f(X) + f(x) y’(x) + g(x) y(x) = h(x) (4) 

for 

x,dx<l with r(l)=,& 

We shall seek an outer solution as an asymptotic expansion in the form 

Y(X) = -f a,(x) En (61 
n = 0 

where a,(x) are unknown functions to be determined. Substituting the equation (6) 
in the equations (4) and (5) we get 

.z[a~+a~e+a~2+ . ..]+f(x)[ab+a.&+a;&‘+ ...] 

+g(x)[ao+a,E+a2E2+ . ..]=h(x) (7) 

for xP d x < 1 with 

ao(l)+a,(l)~+a2(1)~2~~~ =/I. (8) 

Equating the coefficients of various powers of E in equations (7) and (g), we get 

f(x) 4 + g(x) a0 = h(x) with a,(l)=P 19) 

f’(x) al, + g(x) a, = -a;- 1 with a,( 1 j = 0, where n = 1, 2, 3 ,... . (lOi 

The solution of the equation (9), if we take account of the boundary condition, is 

Recursively, the functions a,(x), a2(x),... can be obtained by solving the 
equation (10) for n = 1,2, 3,.... Thus, the expansion for y(x) given in the equation 
(6) is obtained. Hence, the terminal boundary condition can be obtained from (6) 
and denote 

y(x,) = f un(xp) En = a. (12) 
?I=0 
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Since the terminal point x,, is common to the both inner and outer regions, it leads 
to the inner region problem as a two point boundary value problem: 

for 

wNb) +ftx) Y’(X) + g(x) Y(X) =&I (13.1) 

Odx6x, with y(O) = a and I = E (13.2) 

We choose the transformation 

x = te (14.1) 

to create a new inner region problem. By resealing the equation (13.1) with 

Y(X) = Y(fE) = Y(t) (14.2) 

y’(te) Y(t) 
y’(x)=-=- 

F E 

y”(tg) Y(t) y”(x)=T=T 
E & 

(14.3) 

(14.4) 

f(x) =f(tE) = F(t) 

g(x) = g( re) = G(t) 

h(x) = h( t&) = H(t) 

we obtain the new differential equation for the inner region solutions as, 

Y”(t) +F(t) y(t) + &G(t) Y(t) = Eff(t). 

(14.5) 

(14.6) 

(14.7) 

(15) 

Boundary conditions for the equation (1.5) are determined by (14.2), (14.1) and 
(13.2) as, 

Y(0) = ff and Y( tp) = a. (16) 

We solve this new inner region problem (15) with (16) to obtain the solution over 
the interval 0 < t < t,. From this solution, we determine the value of Y’(t,) and 
inturn y’(x,) by using the equation (14.3) and denote it as 

y’(x 
P 

) = %J - p -- . 
E 

Returning back to the outer region, we have the outer region problem as a two 
point boundary value problem: 

M(x) -t-f(x) Y’(X) + g(x) Y(X) = 4x1 (18) 
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for x,fx< 1 with 

Y’b,) = Q (19.I) 

and 

y(l)=B (19.2) 

We solve this outer region problem (18) with (19.1)-(19.2) by employing the 
classical finite difference scheme to obtain the solutions over the interval .yp < x < 1. 
In this scheme, as usual, we divide the interval [IX,, 1] into N equal subintervals 
with step size h = (1 -x,)/N, and replace the differential equation (18) by a set of 
difference equations using the central difference formulae (cf. Fox [ 6] ) 

ylzYi+l - Y,-1 
I 2h 

(20.1) 

-2yi-t Yt-I y;‘gyi+l h2 . (20.2) 

The derivative boundary condition (19.1) is also replaced by the corresponding dif- 
ference equation. Including the difference equation at the terminal point xp, we 
have N linear algebraic equations involving y(x,), y(xl),,.., y(x,-,) as unknowns. 
This algebraic system is in the tridiagonal form, which can be very easily and very 
efficiently solved by a direct method (for details, see Conte and De Boor [4]). 

After solving the both inner and outer region problems, we combine the solutions 
of inner and outer region problems to obtain an approximate solution to the 
original problem (2) with (3) over the interval 0 d x 6 1. 

Repeat the process for different choices of ‘xp’ (terminal point), until the solution 
profiles do not differ materially from iteration to iteration. For computational point 
of view, we use an absolute error criteria, namely 

where 

Y(f)@) = mth iteration of inner region solution 

and 

6 = prescribed tolerance bound. 

3. TEST EXAMPLES AND NUMERICAL RESULTS 

EXAMPLE 1. Consider the following homogeneous SPP which has earlier been 
solved by Reinhardt [ 111 and Roberts [ 121. 

Ey” + y’ + y = 0; O<X<l 



354 KADALBAJOO AND REDDY 

with 

Y(O) = 1 

The exact solution is given by 

and y(1)=2. 

(2-P) (e’l - 2) 
Y,(X) = (e’l _ e12) P + (e7, _ g-2) erzx 

where 

and 

t-1 = 
-l+,ir-l, 

2.5 

l-2 = 
-1-JCZ 

2E 

In the outer region X, <x < 1, the problem becomes 

&Jf + y’ + y = 0; X,<X<l 

with 

y(1)=2. 

Assuming the solution in the form 

Y(X) = f 4x1 En 
n=O 

we get the first order problems as follows: 

&)+a,=0 with a,(l) = 2 

a:,+a,+a,“~,=O with a,( 1) = 0. 

By taking only three terms in the expansion, we get 

a,(x) = 2e1-x 

a,(x)=2(1-x)e’-” 

and hence 

Evaluate v(x) at x = xP and denote y(x,) = 6. 
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By choosing the transformation x = tc and by resealing we get new differential 
equation in the inner region 

Y+ Y’+&Y=O; O<t<t, 

with 
Y(O)=a and Y(t,)=Z. 

This boundary value problem has analytical solution 

where 

and 

p =-l-&4& 
2 2 . 

From this Y(t) we can find Y’(t), which will provide us with y’(x,); we denote 

y’(x 
P 
) = r’w - - 

--p. 
& 

Now coming to outer region again, we have 

,y” + y’ + y = 0; X,<X<l 

with 

YYX,) = P and y(l)=B. 

This two point boundary value problem is solved using finite difference scheme and 
the solutions for different values of E are presented in Tables I and II. 

EXAMPLE 2. Consider the following non-homogenous SPP which arises fre- 
quently in fluid dynamics. This has earlier been solved by Reinhardt [ 111: 

,y” + y’ = 1 + 2x, O<.Ud 1 

with 

Y(O) = 0 and y(l)= I. 

The exact solution is given by 

yE(x)J2~-l)(l-exP(-x/~))+.s(x+1-2s) 
(1 - exp( - lb)) 

581;62,:2-7 
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TABLE I 

Numerical Results for Example 1, E = 10m3 

‘P’ 
x 

0.0 
2.5(10-4) 
5.0(10-4) 
1.0(10-3) 
5.0(10-3) 
1.o(1o-z) 
2.0(10-2) 
3.0(10 -2) 
4.0(10-2) 
l.o(lo-1) 
2.0(10-l) 
3.0(10-‘) 
4.0(10-l) 
5.0(10-l) 
6.0(10-l) 
7.0(10-‘) 
8.0(10-‘) 
9.0(10-l) 
1.0 

1 

Y(X) 

1 .ooooooo 
2.5528358 
3.7620445 
5.4365691 

4.9236615 
4.4546650 
4.0303420 
3.6464375 
3.2991012 
2.9848500 
2.7005325 
2.4432971 
2.2105642 
2.0000000 

10 

Y(X) 

1 .ooooooo 
1.9803880 
2.7438053 
3.8009368 
5.3849677 
5.3878108 

4.9235989 
4.45459 13 
4.0302835 
3.6463921 
3.2990671 
2.9848253 
2.7005156 
2.4432869 
2.2105596 
2.0000000 

20 

Y(X) 

1 .ooooooo 
1.9803425 
2.7437245 
3.8008070 
5.3847644 
5.3876073 
5.3341478 

4.9235755 
4.4545907 
4.0302835 
3.6463921 
3.2990671 
2.9849253 
2.7005156 
2.4432869 
2.2105596 
2.0000000 

30 

Y(X) 

1 .ooOOooo 
1.9803423 
2.7437243 
3.8008066 
5.3847638 
5.3876067 
5.3341475 
5.2810192 

4.9235589 
4.4545904 
4.0302835 
3.6463921 
3.2990671 
2.9848253 
2.7005156 
2.4432869 
2.2105596 
2.0000000 

Exact Solution 

1 .oOOOOoo 
1.9803425 
2.7437244 
3.8008070 
5.3847643 
5.3876072 
5.3341478 
5.2810193 
5.2284199 
4.9236444 
4.4546513 
4.0303313 
3.6464292 
3.2990950 
2.9848455 
2.7005293 
2.4432951 
2.2105633 
2.0000000 

TABLE II 

Numerical Results for Example 1, E = 1O-4 

f,P 1 10 20 30 
x Y(X) Y(X) Y(X) Y(X) 

Exact Solution 

0.0 1 .ooooooo 1 .ooOOoOO 1 .ooOOooo 1 .oooOOoo 1 .ooOOoOO 
2.5(10-5) 2.5525396 1.9813069 1.9812623 1.9812623 1.9812624 
5.0(10-5) 3.7616268 2.7455385 2.7454593 2.7454593 2.7454593 
l.O(lO-4) 5.4365637 3.8042071 3.8040798 3.8040798 3.8040798 
1.0(10-3) 5.4316725 5.43 14709 5.43 14709 5.4314709 
2.0(10-3) 5.4262430 5.4262430 5.5262430 
3.0(10-3) 5.4208189 5.4208 189 
4.0(10-3) 5.4154003 
l.o(lo-1) 4.9190618 4.9196396 4.9196401 4.9196396 4.9196491 
2.0(10-‘) 4.4509658 4.4514307 4.4514308 4.45 14307 4.4514380 
3.0(10-1) 4.0274189 4.0277814 4.0277818 4.0277819 4.0277874 
4.0(10-‘) 3.6441669 3.6444516 3.6444520 3.6444516 3.6444563 
5.0(10-1) 3.2973860 3.2976039 3.2976043 3.2976039 3.2976075 
6.0(10-‘) 2.9836106 2.9837662 2.9837665 2.9837662 2.9837688 
7.0(10-1) 2.6996907 2.6997969 2.6997971 2.6997969 2.6997986 
8.0(10-l) 2.4427893 2.4428533 2.4428535 2.4428533 2.4428544 
9.0(10-l) 2.2103645 2.2103634 2.2103636 2.2103634 2.2103639 
1.0 2.0000000 2.0000000 2.0000000 2.0000000 2.0000000 
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In the outer region, the problem becomes 

&Y” +y’== 1+2x; x,6x61 

with 

y(l)= 1. 

Assuming the solution y(x) in the form 

y(x) = g a,(x) En 
n=O 

we get the first order equations 

4=1+2x with a,(l)= 1 

a:,= -a;-l with a,( 1) = 0, where n = 1, 2 ,... . 

Taking only two terms in the expansion of v(x) we get 

ao(x)=x+x2- 1 

al(X)=2(1-x) 

and hence, 

y(x)=x+x”- 1+2&(1-x). 

Evaluate y(x) at x = x, and denote 

y(x,) = a. 

By choosing the transformation x = t& and by resealing, we get new differential 
equation in the inner region, 

with 

r’+ y’ = & + 2c2t, O<t<t 
P 

Y(O)=0 and Y&J = ii. 

This two point boundary value problem also has analytical solution 

Y(t)=A+Be-‘+Et+&“t’-&-2E2t+2EZ, 

where the constants A and B are given by 

B = (a .- &tp - E2t; + 2&9&J 

(eC’p- 1) 
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TABLE III 

Numerical Results for Example 2, E = 10m3 

tP+ 
x 

1 
Y(X) 

10 
Y(X) 

20 
Y(X) 

30 
YCX) 

Exact Solution 

0.0 
2.5(10-4) 
5.0( 10-4) 
1.0(10-3) 
5.0(10-3) 
1.0(10-2) 
2.0(10-y 
3.0(10-2) 
4.0(10-2) 
l.O(lO-') 
2.0(10-l) 
3.O(lOW') 
4.0(10-l) 
5.0(10-1) 
6.0(10-l) 
7.0(10-1) 
8.0(10-1) 
9.0(10-') 
1.0 

0.00000000 
- 0.34898259 
-0.62071514 
-0.99700100 

-0.88820002 -0.88820860 -0.88819764 -0.88820346 
-0.75840002 -0.75840015 -0.75839998 -0.75840005 
- 0.60860002 - 0.60860004 - 0.60860004 -0.60860001 
-0.43880005 -0.43880006 -0.43880007 -0.43880006 
- 0.24900011 - 0.24900008 - 0.24900008 - 0.24900008 
-0.03920017 -0.03920008 - 0.03920008 - 0.03920008 

0.19059982 0.19059993 0.19059993 0.19059993 
0.44039984 0.44039994 0.44039994 0.44039994 
0.71019990 0.71019997 0.71019997 0.71019997 
1.00000000 1 .oooooooo 1 .oooooooo 1.00000000 

0.00000000 
-0.22051727 
-0.39220097 
-0.62988596 
-0.98630553 
-0.98792000 

0.00000000 
-0.22050725 
-0.39218314 
-0.62985732 
-0.98626053 
-0.98787469 
- 0.97764000 

0.00000000 
-0.22050725 
-0.39218314 
-0.62985732 
-0.98626053 
- 0.98787469 
-0.97764000 
-0.96716000 

0.00000000 
- 0.22050726 
-0.39218315 
-0.62985732 
- 0.98626053 
-0.98787469 
-0.97764000 
-0.96716000 
-0.95648000 
-0.88820001 
-0.75840001 
-0.60860001 
-0.43880001 
- 0.24900001 
-0.03920000 

0.19060000 
0.44039998 
0.71019999 
1 .oooooooo 

and 

A= --B+E-2E2. 

From this Y(t) we can find Y’(t), which will provide us with Y’(x,); we denote 

y’(x )= r(liJ p 

P 
-z. 

E 

Now coming to outer region again, we have 

Ey” f JJ’ = 1 + 2X, x,dxdl 

with 

Y’(X,) = P and y(l)= 1. 

This two point boundary value problem is solved using finite difference scheme and 
the solution for different values of E are presented in the Tables III and IV. 
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TABLE IV 

Numerical Results for Example 2, E = 10e4 

‘P+ 1 10 20 30 Exact Soiatior, 

x J?(x) Y(X) Y(X) JO) 

0.0 
2.5(10 -5) 
5.0(10-5) 
l.o(lo-4) 
l.O(lO-3) 
2.0(10-3) 
3.0(10-3) 
4.0(10-3) 
l.o(lo-‘1 
2.0(10-‘) 
3.0(10-1) 
4.o(1o-1) 
5.0(10-‘) 
6.0(10-‘) 
7.0(10-‘) 
X.0(10-‘) 
9.O(lOW’) 
1.0 

0.00000000 
-0.34983702 
-0.6222848 1 
-0.99970001 

-0.88982894 -0.88982006 -0.88982006 -0.88982006 
-0.75984900 -0.75984006 -0.75984006 -0.759X4006 
-0.60986901 -0.60986005 -0.60986005 -0.60986005 
-0.43988874 -0.43988006 -0.43988006 -0.43988006 
-0.249908 13 -0.24990012 -0.24990012 -0.24990012 
-0.03992718 -0.03992017 -0.03992017 -0.03992017 

0.19005410 0.19005981 0.19005981 0.19005981 
0.44003573 0.44003983 0.44003983 0.44003983 
0.71001770 0.71001990 0.71001990 0.71001990 
1.00000000 1 .oooooooo 1 .ooooooOO 1 .oooooooo 

0.00000000 
-0.22114003 
-0.39335851 
-0.63192284 
-0.99879920 

0.00000000 

-0.22112999 
-0.39334065 
-0.63189416 
-0.99875381 
-0.99779640 

0.00000000 
-0.22112999 
-0.39334065 
-0.63189416 
-0.99875381 
-0.99779639 
-0.99679160 

O.QO~OOQ 

-0.22112999 
-0.39334064 
-0.63189415 
-0.99875381 
-0.99779639 
-0.99679159 
-0.99579480 
-0.88982000 
-0.75984000 
-0.60986000 
-0.43988000 
-0.24990000 
-0.03991999 

0.19006000 
0.44003999 
0.7POO2001 
1.00000000 

4. DISCUSSION 

A new method based on the method of inner boundary condition for solving 
singular perturbation problems is presented. In this method, the solution of the 
outer region problem provides the terminal condition (y(x,)) for the inner region 
problem. And in turn, the solution of the inner region problem provides the ter- 
minal condition (y/(x,)) for the outer region problem. This serves as the link 
between the two regions. As mentioned, the method is iterative on the terminal 
point. The process is to be repeated for various choices of xP (terminal point) until 
the solution profiles stabilize in both the regions. The point xP is not unique but can 
assume a wide range of values. To reduce the amount of computation, we choose 
the smallest value of xP which produces the required accuracy. Because the inner 
region problem interval is very small relative to the entire interval of the original 
problem, we can usually improve our accuracy by making xP larger. As an alter- 
native to the solution of the outer region problem (18) with (19.1))( 19.2), we may 
use the solution (6) of the problem (4) with (5) over the interval xP < .X < 1. Two 
test examples have been solved. We have tabulated the numerical results obtained 
by the present method as well as the exact solution for different values of e. The 
numerical experimentation on these examples demonstrates that the present method 
approximates the exact solution well. All the calculations have been performe 
DEG-10 computer system at IIT Kanpur. 
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